Complexity theory
MM Waldrop in his book, Complexity: the emerging science at the edge of order and chaos (1992) noted:
“…that corporations and industries evolve for better survival in a changing environment. And the marketplace responds to changing tastes and lifestyles, immigration, technological developments, shifts in the price of raw materials, and a host of other factors. Finally, every one of these complex, self-organising, adaptive systems possesses a kind of dynamism that makes them qualitatively different …… Complex systems are more spontaneous, more disorderly, ..[yet].. at the same time, however, their peculiar dynamism is also a far cry from the weirdly unpredictable gyrations known as chaos. These complex systems have somehow acquired the ability to bring order and chaos into a special kind of balance.”
Complexity theory arises between order and chaos.
“Complex systems tend to locate themselves at a place we call the edge of chaos. We imagine the edge as a place where there is enough innovation to keep a living system vibrant and enough stability to keep it from falling into anarchy. Only at the edge of chaos can a complex system flourish.” (Malcolm, 1995)
Research has shown that complexity is very similar to chaos theory (Decker, 2000; Flood, 1988) but that it requires a structured environment to exist. The majority of research (Ambos-spies, 1993) into complexity has followed on from chaos theory, but it is still an emergent theory with many unknowns. As a result, there is no standard definition.
Research on complex systems in biology (Phelan, 1995) has focused on the use of cellular automata. These models control single cells via a set of rules or by the state of their immediate neighbours. The Game of Life, a simple computer program that was popular among programmers in the early 1980’s, is a well-known form of cellular automata. (Wolfram, 1986; Hubler, 1986).
Complexity is well suited to specific physical or chemical applications (Lloyd, 1995; AppliedFutures, 1998) as they are very chaotic but are based solely around a well-structured environment. As an example of the potential application of chaos-based theoretical models, see Biomimicry.
The text in this article is based on ‘Business Management in Construction Enterprise’ by David Eaton and Roman Kotapski. The original manual was published in 2008. It was developed within the scope of the LdV program, project number: 2009-1-PL1-LEO05-05016 entitled “Common Learning Outcomes for European Managers in Construction”. It is reproduced here in a slightly modified form with the kind permission of the Chartered Institute of Building.
--CIOB
[edit] Related articles on Designing Buildings Wiki
[edit] External references
- Waldrop, M.M.: Complexity: the emerging science at the edge of order and chaos, 1992.
Featured articles and news
A briefing on fall protection systems for designers
A legal requirement and an ethical must.
CIOB Ireland launches manifesto for 2024 General Election
A vision for a sustainable, high-quality built environment that benefits all members of society.
Local leaders gain new powers to support local high streets
High Street Rental Auctions to be introduced from December.
Infrastructure sector posts second gain for October
With a boost for housebuilder and commercial developer contract awards.
Sustainable construction design teams survey
Shaping the Future of Sustainable Design: Your Voice Matters.
COP29; impacts of construction and updates
Amid criticism, open letters and calls for reform.
The properties of conservation rooflights
Things to consider when choosing the right product.
Adapting to meet changing needs.
London Build: A festival of construction
Co-located with the London Build Fire & Security Expo.
Tasked with locating groups of 10,000 homes with opportunity.
Delivering radical reform in the UK energy market
What are the benefits, barriers and underlying principles.
Information Management Initiative IMI
Building sector-transforming capabilities in emerging technologies.
Recent study of UK households reveals chilling home truths
Poor insulation, EPC knowledge and lack of understanding as to what retrofit might offer.
Embodied Carbon in the Built Environment
Overview, regulations, detail calculations and much more.
Why the construction sector must embrace workplace mental health support
Let’s talk; more importantly now, than ever.
Ensuring the trustworthiness of AI systems
A key growth area, including impacts for construction.